As in previous years, the congress will be accompanied by a highly impressive industrial exhibition featuring app. 300 companies and a large poster display. Global laser and light technology manufacturers, as well as companies from diagnostic, dermal filler, implant, pharmaceutical and nutraceutical industries will use this opportunity to display product innovations and introduce new clinical results.

H. Dobrev, *Use of Visiopor to Study Skin Fluorescence in Acne*, 6th Regional Conference of Dermatology and Venerology, 30.04.-02.05.2010, Hisarva, Bulgaria
Acne vulgaris – Definition: Acne vulgaris is a chronic inflammatory disease of the pilosebaceous units that affects 80% of people between the age of 11 and 30 years. Acne – Multifactorial pathogenesis: Retentional hyperkeratosis; Increased sebum production; Propionibacterium acnes; Inflammation Acne and skin microflora: Acne is not infectious. Cutaneous microflora is an element of acne pathogenesis which contributes to the inflammation. Cutaneous microflora is of secondary importance compared with: sebaceous gland activity; hyperproliferation of follicular keratinocytes (significant microbial involvement occuring only after sebum production has increased and comedone formation has become established.

Diverses structures cutanées peuvent émettre une fluorescence en réponse à la stimulation lumineuse spécifique d’un fluorophore particulier. En particulier, la fluorescence de porphyrines peut être détectée sous différentes illuminations dans le spectre allant de la lumière bleue aux rayons ultraviolets dont la longueur d’onde est comprise entre 300 et 450nm. La source lumineuse d’excitation peut être la lumière de Wood, celle d’une lampe à arc, d’une lampe au krypton, d’une lampe à mercure avec un filtre adéquat, d’une source lumineuse bleue incohérente ou violette dont la longueur d’onde se suit au pic d’excitation de la fluorescence, ainsi que de lampes diodes particulières et de quelques autres systèmes encore. Sous ces stimulations, la fluorescence des porphyrines apparaît rougeâtre.

Acne is a chronic inflammatory disorder of the pilosebaceous follicles with a multifactorial etiology and pathogenesis. It typically begins in adolescence when androgen hormones stimulate the production of sebum and proliferation of follicular epidermis. In consequence, the openings of hair follicles become plugged with oil secretion and corneocytes. The follicular impactions develop into initially invisible lesions (microcomedones) and then into clinically evident comedones.
Acne is a common disorder in adolescents and young adults. It results from alterations taking place in pilosebaceous follicles. These structures are most abundant on the face, chest and upper back. Several sequential biological steps are involved in the initiation, maturation and regression of each acne lesion. At first, during the preadolescent age, hormonal changes progressively lead to increased circulating androgens, both in boys and girls. Androgen receptors are present in the sebaceous gland apparatus. Their stimulation leads to increasing the size of the sebaceous gland, the sebum flow (skin greasiness) and the size of opening of the excretion duct at the skin surface (skin pore, acneinfundibulum).

Under specific light illumination, particularly ultraviolet (UV) and near-UV light stimulation, the skin produces both specular light reflectance and, possibly, specific fluorescent emission. These properties offer diagnostic clues and disclose some peculiar functions of the skin. A series of superficial infections (erythrasma, some tinea capitis types, tinea/pityriasis versicolor, dermatophytoses, etc.) and pilosebaceous follicles enriched in Propionibacterium spp show fluorescence. This latter characteristic is downgraded or lost while on some anti-acne treatments. A quenching effect of fluorescence is observed following the application of sunscreens.

Seborrhoeic dermatitis and dandruff are common scalp conditions. In this study, we set out to explore a new method for rating both the severity of the scalp condition and the efficacy of scalp-care compounds. Scalp flakiness was sampled for 40 volunteers using adhesive-coated clear discs, with image analysis used to quantify the specular light reflectance (SLR) of the flakes. Two ultraviolet (UV)-emitting charge-coupled device cameras (Visioscan VC98 and Visiopor PP34) were used. SLR clearly highlighted the flakiness with high contrast against a black background, and the recorded appearance could be conveniently submitted to the image-analysis system for quantification. In conclusion, SLR under UV illumination highlights scalp flakiness, allowing objective measurements.

Actinic (solar) lentigines are melanotic tumors frequently developed during photoaging on the dorsum of the hands. Bleaching (whitening) agents are commonly offered to fade their darker aspect. In general, regular colorimetric methods show poor sensitivity to disclose any bleaching effect. The present randomized controlled study on 24 women was designed to objectively assess the clinical efficacy of a combination of bleaching agents on actinic lentigines. In the endeavour of improving sensitivity. The ultraviolet light-enhanced visualization (ULEV) method was used to derive analytical measurements of lentigo areas and darkness.

Cancer patients under targeted chemotherapy to the epidermal growth factor receptor (EGFR) frequently suffer from unusual skin adverse events. In the past, these changes were globally qualified as a rash. Our aim was to assess objectively by non invasive bioinstrumentation some early structural and functional skin changes associated with EGFR inhibitor treatment. A series of 27 cancer patients aged 58-66 years were assessed using two ultraviolet light emitting CCD cameras, Visioscan and Visiopor. Assessments were performed on the foreheads at inclusion and therefore at weekly intervals for 2 months at most. No topical treatment was applied during the assessment period.

For centuries the human eye was the only imaging device. Since the introduction of microscopy, technical advances have been progressively brought through instruments. In fact, a considerable research effort has been launched and rapidly improved new imaging technologies over the past two decades. They have been successfully applied to skin observation, each of them affording new insight into and specific information on cutaneous morphology and physiology. In this field, we are looking at what the eye has never seen before.

G. Mayeux. E. Xhauflaire-Uhoda, G.E. Piérard, Patterns of aluminium hydroxychloride deposition onto the skin, Skin Research and Technology, 2011

The normal stratum corneum (SC) is nearly impermeable except for some small size xenobiotics and a minute amount of water evaporating from its surface. This property supports the concept of a diffusional barrier function that may be weakened in some conditions. The remarkable barrier effect results from the highly organized structure of the SC. The predominant route for water passage is thought to reside in the intercorneocyte path composed of a complex mixture of lipids structured in rigid bilayer arrays. In practice, the measurement of transepidermal water loss (TEWL) is performed at rest in a cool environment in order to assess this physiological process. Under physical or emotional stress, TEWL is severely altered by sweating.


C. Uhl, D. Khazaka, Techniques for globally approved skin testing, Personal Care April 2013

In efficacy testing and claim support for cosmetic products, objective measurement systems became indispensable long ago, especially since subjective clinical assessments are often prone to bias and inter-observer variation. Without suitable instrumentation it is close to impossible to determine what a product is really doing for the skin. Those objective measurement methods and subjective evaluations are mutually dependent. No measurement can be performed without the subjective evaluation of the results by the user of such instrumentation. However, a pure subjective evaluation of the skin without appropriate measurement techniques is not able to achieve accurate results either. This relationship becomes clearer when looking for example at skin colour measurements. Subjectively, the human brain cannot process slight changes in colour, especially when the colours are not viewed side by side, but at different points in time. Instrumental measurement however will clearly detect such slight changes. The achieved result must then be interpreted in context with the expected outcome or the hypothesis. For this, you will always need a knowledgeable and experienced person because ‘a fool with a tool is still a fool’, as the late Albert Kligman used to say. This relationship between objective measurement and subjective evaluation is not only true for the determination of differences in skin colour, but also for all other skin measurement parameters important for the cosmetic industry.
R.S. Teixeira, L.A. Araújo, D.G. Mercúrio, P.M.B.G. Maia Campos, Application of biophysical techniques to evaluate the efficacy of a gel with zinc pca, University of Sao Paulo, 2013

The biophysical and skin imaging techniques are effective tools to help characterize the skin type and to evaluate the clinical efficacy of products cosmetics because they are non-invasive methods and enable to evaluate the products directly in human skin.

G. Piérard, D. Khazaka, G. Khazaka, Sunscreen remanence on the skin: a noninvasive real time in vivo spectral analysis assessing the quenching of specular ultraviolet A light reflectance, Journal of Cosmetic Dermatology, 15,p. 3-9

Abstract - Background: Under specific light illumination, particularly ultraviolet radiation (UVR), the skin produces both specular light reflectance and, possibly, specific fluorescent emission. A quenching effect of fluorescence is observed following the application of sunscreens active against UVA radiations. Aims: To assess noninvasively in a real-time process, the potential sunscreen remanence/substantivity after application on the skin. Methods: The Visiopor(®) device was used in a real-time procedure after application of sunscreens to the skin. A quenching effect of follicular fluorescence due to bacterial porphyrins was evaluated at 30-min intervals. The Visioscan(®) device was used as a distinct UVA emitter in a control procedure of spectral analysis of specular UVR emission and reflectance by dermal fibers. Results: Under UVA-1 irradiations, facial skin produced different patterns of specular UVR reflectance and fluorescent emission as well. The porphyrin-related follicular fluorescence was instantly abated by UVA blockers present in sunscreen products. The potential sunscreen remanence/substantivity was assessed by the follicular and interfollicular fluorescence recurrence all along the next hours.

S. Eisenberg, H. Hanau, D. Kleefeld, V. Bicard-Benhamou, H. Driller, 3R regulation of oily skin and microflora balance, Personal Care April 2016

There is something many of us remember from our teenage years but only a few associate with adulthood: oily skin. Oily skin is a major issue, because it affects those areas that are the most exposed, like the chin, forehead and nose. Oily and impure skin causes a real aesthetic problem and may lead to higher acne susceptibility. Even in adults, a healthy facial skin and complexion play an important role. Consumers around the world have become very self-conscious of their appearance.

C. Richter, C. Trojahn, G. Dobos, U. Blume-Peytavi, J. Kottner, Follicular fluorescence quantity to characterize acne severity: a validation study, Skin Research and Technology 2016; 0: 1-9

Background: Porphyrins are native fluorophores in the follicle openings, visible under ultraviolet-A light. Acne severity might be associated with increased Propionibacterium acnes colonization and porphyrin production. Aim of this study was to investigate whether the parameter fluorescence quantity can be used to measure acne severity. Methods: A validation study was conducted in 24 patients with acne using split-face design. Acne severity was measured using Investigator Static Global Assessment scores and lesion counts. Reliability, construct validity and sensitivity to change in fluorescence quantity were investigated. Results: Mean baseline Investigator Static Global Assessment score was 2.7 (SD 0.1). Mean baseline fluorescence quantities were 24.8 (SD 4.0) on the cheek and 20.3 (SD 4.6) on the chin. On day 25, values ranged from 6.0 (SD 6.0) to 18.1 (SD 18.4) on the cheek and from 2.6 (SD 4.4) to 14.7 (SD 16.2) on the chin. The intraclass correlation coefficients of fluorescence quantity ranged from 0.513 to 0.987. Effect sizes for fluorescence measurements were highest on the chin and cheek ranging from 0.24 to 0.77 and 0.32 to 0.75, respectively. Conclusion: Fluorescence quantity indicates acne severity, especially on the inner cheek and chin areas. Fluorescence quantity is reliable but is not as sensitive as manual lesion counting.


Background: Oily skin presents shine in excess, as well as increased pores and acne. For this reason, people with oily skin have more difficulty using cosmetics in general. This is the first
report in literature to evaluate a multi-purpose dermatological emulsion containing *Melaleuca alternifolia* Cheel (Myrtaceae) (tea tree) oil and resveratrol for oily skin.

*C. Uhl, D. Khazaka, Test equipment supports anti-pollution claims, PERSONAL CARE ASIA PACIFIC, May 2017, p. 27-29*

Pollution and its impact on the skin have recently become the main topic at all important cosmetic events, and products claiming to protect the skin from pollution effects are a major trend in the cosmetic and personal care industry.

*V. Bicard-Benhamou, J. zur Lage, L. Heider, D. Kleefeld, S. Eisenberg, F. Pfluecker, Evaluation of the potential of a cyclohexyloxyl derivative targeting impure skins, 42th SICC National Congress & 1st IPCE Conference June 2017, Stresa, Italy*

Butyl hydroxycyclohexane carboxylate (BHCC, structure shown on Figure 1), a cyclohexyloxyl derivative is an adequate innovative solution to an issue well-known from our teenage years and yet more rarely associated with adulthood: oily skin and its impact on the appearance of acne formation. At all ages impure skin issues may lead to a real aesthetic problem considering that in nowadays life, image resulting from own appearance matters more and more and because it appears on body parts most exposed to view like for instance forehead, nose and chin. Oily skin may result in skin especially prone to open pores, blackheads, spots and pimples, skin appearing greasy and coarse and skin looking uneven. Most people associate oily skin with teenage years, but oily skin can persist long beyond adolescence and for some people it might last a lifetime. Nevertheless, acne most often begins in puberty when androgens level increases causing sebaceous glands to become more active resulting in increased sebum production. *Propionibacterium acnes* (*P. acnes*), mainly colonized in the pilosebaceous unit, plays a crucial role in the development of acne. Acne patients demonstrate marked increases of this microorganism (1), *P. acnes* and its metabolites, the porphyrins, are also associated with inflammation processes in the skin. The perception of the skin as an ecosystem can advance our understanding of the delicate balance between host and microorganism. Disruptions in the balance on either side of the equation can result in skin disorders or infections (2) and non-beneficial bacteria are associated with them. On the other way beneficial bacteria helps preventing pathogenic microorganisms from colonizing the surface of the skin and preserving them is essential. A healthy and balanced microflora is therefore crucial. BHCC helps relieving skin from susceptibility to acne development and supporting skin health. BHCC provides a triple effect: it Regulates Sebum, it Reduces inflammation, and finally it rebalances skin’s microflora and all the results shown here provide a scientific demonstration of these claims.